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Abstract-Radiant heat-transfer effects between closely spaced parallel metal surfaces at low temperature 
are analyzed. The theory considers thermally induced fluctuating electric fields at the surface of the metal, 
similar to those responsible for Nyquist noise, as the source of the thermal radiation field in the vacuum 
space between the metals. Both traveling wave and quasi-stationary wave components of the thermal 
radiation field are shown to exist in the vacuum region due to these sources. The electric and magnetic 
field vectors associated with these fields existing in the vacuum space are derived utilizing standard 
electromagnetic boundary theory, and the resulting unidirectional heat fluxes are calculated using the 
Poynting theorem. The resulting heat fluxes are shown to correspond to highly unclassical heat-transfer 
effects when the product of spacing distance I and the surface temperature T is less than 1 cm “K. At small 
spacing distances the heat flux first rises in a manner intersely proportional to the spacing distance and 
then where IT 6 10-2cm”K, the unidirectional heat transfer rises inversely proportional to the fourth 
power of this product. The results of this theory are shown to be consistent with previous experimental 

measurements. 
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= (Ne/ms)“‘, plasma frequency; 

Riemann zeta function. 

INTRODUCTION 

SEVERAL earlier papers have addressed the theory of 
nonclassical radiative heat-transfer effects between 

closely spaced metal surfaces at low temperature 

[l, 2, 31. These analyses predicted radiation heat- 
transfer effects between closely spaced metal surfaces 
based on the assumption of an isotropic thermal 

radiative source field consisting of undamped plane 
waves interior to the metals and the use of standard 

electromagnetic boundary theory to predict the heat 
transfer through the calculation of a transmission 

coefficient between the metal surfaces through an 
intervening vacuum region [l, 31. In these analyses 
both waveinterference and tunneling effects are present 
[4]. Rytov has pointed out [5] that the concept of a 
thermal radiation field interior to a metal is invalid and 

that a proper analysis begins with the treatment of the 
thermally induced fluctuations of carrier or current 

density in the metal surfaces as the source of the 
exterior radiation field. This model leads to the concept 
of a corresponding thermally induced lateral electric 
or magnetic surface field as the source field for. radiative 
heat transfer for a metal in which the skin effect is well 
developed. Polder and Van Hove [6] have published 
a generalized theoretical analysis of radiative heat 
transfer between metallic surfaces in the vein of Rytov 
[5] using a thermally induced surface current source 
term and a generalized model for the electrodynamic 
properties of the metal surface. These results depend in 
such a complex manner on the dielectric properties of 
the metal that they do not lend themselves to even 
qualitative conclusions on the variation of heat-transfer 

effects with material changes. However, Polder and Van 
Hove numerically calculate the spacing dependence of 
the radiative transfer between two chromium surfaces 
near room temperature and find semiquantitative 

agreement between their theory and the experimental 
measurements of Hargreaves [7]. They ascribe the 
differences between their theoretical predictions and 

Hargreaves measurements to their use of the diclcctric 
properties of chromium based on the bulk mcasure- 
ments in contrast to the presumed differing dielectric 
properties of the thin chromium films used in 

Hargreaves experimental measurements. The prcscnt 
analysis addresses the problem of heat transfer hctween 
highly conductive metal surfaces at low temperature 

using the methods developed by Rytov where it is 
assumed that the extreme anomalous skin effect (EASE) 
theory will describe the electrodynamic properties of 

the metal and further that the skin effect is well 
developed. i.e. only a thin surface layer of the metal 
is responsible for the emission and absorption of 
radiation. Under these assumptions the dependence of 

the radiative heat transfer in spacing effect and elcctro- 
dynamic properties of the metal are uncoupled and 
simple approximate expressions describe the beat- 
transfer effects and material dependence. The Ircsults 
of this theory are in good agreement with the cxperi- 

mental measurements of Crdvahlo. Domoto and Tien 
[S]. and Boehm and Ticn [9] showing enhanced 
radiative heat transfer between closely spaced coppc~ 

surfaces at low temperature. 
The present theory is based on the recognition that 

the source of the thermal radiation in a highly con- 
ductive metal is due to fluctuations of the electrons in 

the metal due to temperature of the metal. The 
fluctuations in carrier density give rise to the prcscncc, 

in particular. of corresponding lateral fluctuating 
electric fields having all spatial frequencies in the skin 
region which. by virtue of the continuity conditions 
imposed on the tangential component of the clcctric 

field demanded by Maxwell’s equations. result in 
corresponding fields in the vacuum region surrounding 
the metal. An electromagnetic wave in the vacuum 
space may be characterized in part by its propagation 
vector k, which will have spatial components li,. L2. k, 
satisfying the relationship that 1 k 1’ = kf + k$ + k<, 

where the frequency of the electromagnetic wave is 
related to its propagation vector (‘J* = / kl’c’. IToi 

electromagnetic waves of a given frequency. (‘J’ = 

Ikl 2c,2 in the vacuum space for those spatial com- 
ponents kl and k2 of the source field (taken to bc those 
components in the plane of the surface) such that 
kf + ki < I k 1 2, then the component of the propagation 
vector k, normal to the surface for the wdvc ~II ro(‘rro 
will be real, thus corresponding to a travclinp wave. 
However. if kt + k$ > 1 k / ‘. then the corresponding 
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wave developed in the vacuum region will have an 
imaginary component for k3 and hence will be confined 

to the region near the metallic surface. This wave is 
termed a quasi-stationary wave. The amplitudes of the 

traveling and quasi-stationary waves are determined by 
the strength of the source field. In the present analysis, 

the strength of the source field is determined through 
the requirement that at a large distance from the 

metallic surface the radiant emission observed in the 
vacuum region should be given by the classical value 

n&r,, I,, when C& is determined by the electrodynamic 

properties of the metal. Once the amplitudes of the 
electromagnetic fields present in the vacuum region due 
to the source field have been determined, the heat 
transfer to a second surface is determined by use of 
Poynting’s theorem. In this manner, it will be shown 

that both traveling and quasi-stationary waves play 
nonclassical roles in the heat transfer at small spacing 
distances and further that at small spacing distances 

the heat transfer due to quasi-stationary waves is the 
dominant heat-transfer mechanism. 

METHOD OF APPROACH 

Due to the finite surface temperature of the absorbing 
medium, i.e. the metal surface, a random electric field is 
present in the medium analogous to the electric fields 
responsible for Nyquist noise. This field is the result of 
macroscopic local polarizations occurring in the metal 
due to thermal agitation of the microscopic charges in 

the metal. Rytov [5] has shown that in a metallic 
medium in which the skin effect is well developed? this 
thermal agitation gives rise to a random lateral electric 
field K in which components with all frequencies are 
present. i.e.: 4 

XI 

K= g(kl, k2)exp[i(k,x+kzL’)1dkldk, (1) 
-z 

where the kernel g(kl, k2) of this integral is defined by 

t Rytov has also provided a prescription for the correlation 
function where the skin effect is not fully developed, thus 
providing a basis for calculating the total radiative transfer 
between surfaces under conductions where the conductivity 
is not high and/or the frequencies of the electromagnetic 
radiation are high. 

$The use of a correlation function that is only dependent 
on the coordinates in the plane of the surface is based on the 
following considerations. According to the skin effect theory 
of classical electrodynamics, the internal electric and 
magnetic fields generated by electromagnetic radiation in- 
cident on the metal surface fall to l/e of their surface value 

in a depth d = a, where d is known as the skin depth. 
For example, for frequencies characteristic for low tempera- 
ture thermal radiation, e.g. Y z 3 x 10” Hz (1 = lOOurn), 

the following correlation function: 

gZ(k;, k;)g@(k;, k’;) = C$BS(k; -k;)&k;-k’;) (2a) 

from which 

&(x’, y’)Kg(x”, y”) = (27r)*C&,6(x’-x”)Q-y”) (2b) 

where 

C = W&&4 I 

kj O*. 
(3) 

The bar on the right-hand sides of equations (2) 
represents a time or ensemble average. The correlation 

function C is determined by considering the thermal 
radiation emitted by an infinite metal surface due to the 

random lateral surface field and noting that at large 
distances from the surface the emitted radiant intensity 

should be given n&,IoW. The subscripts tl and fi in 
equations (2) refer to the two spatial dimensions in the 

plane of the metal surface, i.e. those denoted by the 
axes 1 and 2. The term I,, is the radiant intensity for 

blackbody radiation in a vacuum. The delta function 
correlation for the spatial coordinates occurs only 

because in deriving equations (2), Rytov averaged the 
microscopic electrodynamic equations over volumes 

sufficient to average out extreme fluctuations due to 
the graininess of the individual atomic charges. 

This procedure provides a simple delta correlation 
function given by equation (1) which simply means that 
our results will be valid only up to spacing distances on 
the order of the correlation distance. Starting with the 

lateral field given by equation (1) for, say, the first 
medium and utilizing the electromagnetic boundary 

conditions at the two metal surfaces, the field in the 
vacuum space will be determined. Once the field in the 
vacuum space due to the lateral field of the first surface 

is determined, the thermal flux to the second surface due 
to this source will be determined by the application of 

Poynting’s theorem at the second surface. The net heat 
transfer is simply the difference between the heat flux to 
the second surface due to the lateral field of the first 

surface, less the heat flux to the first surface produced 
by the lateral field of the second surface. 

and for a high conductivity metal at low temperature such as 
copper u’ = 10” R-‘/cm, the corresponding skin depth is 
given by 6 z lo-’ cm or 100 A. Thus, it is anticipated that 
the thermal radiation from a low temperature surface should 
originate from a layer near the surface with a thickness 
2 10mh cm. On the other hand, the correlation length should 
be on the order of the electron mean free path [lo] which for 
high conductivity metals at low temperature are less than 
approximately 10m3cm. Thus, the individual regions re- 
sponsible for generating the thermal radiation field can be 
considered to be infinitely compared to their lateral extent. 

5 Landau and Lifshitz [ 11, Chap. 41 also provide excellent 
discussions of the nature ofthe lateral field and its correlation 
function, although not to the depth provided by Rytov. 
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The boundary conditions 
For good conductors at low temperature, the 

boundary conditions for determining the electro- 
magnetic field in the vacuum space adjacent to the 
surface is 

E = _@I x n) (4) 

where the surface impedance is given by [ 121 

2/Z, = Z*2/3(1 - ifi). (5) 

The expression for the surface impedance given in 
equation (4) is for the extreme anomalous skin effect 

(EASE) region, which is the asymptotic limit for high 
conductivity and low frequency for the standard 

anomalous skin effect (ASE) theory, i.e. where Dingles 
parameter 5 satisfies I( / >> 1 [13]. EASE theory is in 

excellent agreement with ASE theory for good con- 

ductors and a range of electromagnetic wave fre- 

quencies encountered for blackbody radiation below 
50 “K and is mathematically much more tractable than 
the ASE theory. Assuming Pippard’s “standard metal” 
[14]t with I+ = 1.40 x 106m/s and N = 6.0 x 10” 

e/m3. the expression for the surface impedance given by 

equation (5) becomes 

z/Z, = 3.18 x lO-‘*~~~~(l-i$) 

or at the frequency maximum given by Wein’s displace- 

ment law (w/T),,, = 3.69 x 10’ ’ rad/s “K, the surface 

impedance is given by 

z/Z, = 4.78 x lo-5 T213(1 -id), 

Thus, on metals having a high conductivity, the surface 
impedance of the metal surface will satisfy the in- 

equality 1 Z/Z,/ cc 1. 
At the surface of the first conductor in which the 

lateral field is present, it follows from equation (4) that 

E,+I?!H,= -K1 and E2-ZH1 = -K2 (6) 

at z = 0, whereas at the second surface where no 

internal fields are assumed to be present 

El +TH2 = 0 and Ez-TH1 = 0 (7) 
_ ~~~~_ ___~___ .__~ 

TThese particular values for the electron density and 
Fermi velocity closely approximate those for the noble 
metals. The Fermi velocity for the “standard” metal is within 
15 per cent of the value for copper and aluminium. The 
electron density of the standard metal is equal to that of 
aluminum but deviates from that of copper by 40 per cent. 
However, in the expression for c+(w, T), the dependence on 
N goes at N’13. so we are not sensitive to reasonable per- 
centage deviations in N. 

at z = 1. Since the surfaces have a high conductivity and 
the frequencies are sufficiently low that 1 ,?I cc Zo. it 
follows that to a high degree of approximation the 
boundary conditions 

E, = -K, and E2= -K, 

hold at z = 0 and the boundary conditions 

(8) 

El=0 ati E*=O (9) 

hold at z = 1. It should be noted immediately that. if 

the approximate boundary conditions in equation (19) 
are utilized, the Poynting flux into the second surface 
must be computed in the same way as for normal modes 

in a lossy waveguide or cavity resonation, namely 

[ll, p. 2911 

(10) 

where Ht is the tangential component of the electro- 
magnetic field at the second surface, i.e. at z = 1. 

The correlation function appearing in equations (2) 
contains the normal absorption coefficient for the 
surface and, as the correlation function will appear in 
our final results, we wish to relate the absorption 

coefficient to the surface impedance, which as we have 
previously seen is a function of the properties of the 
metal. The normal reflectance of a metal is related to its 

surface impedance by 

(II) 

from which, since the normal absorptance of the surface 
is given by aN = 1 -RN, we have 

4Z0 Rr(Z) 4 Re(Z) !.&_.._~._ 
I&+zI z, 

(12) 

from which, utilizing equation (5), z,~ is defined in 

terms of the frequency. 

Equation of heat transftir 
The electromagnetic field vectors in the vacuum 

space between the metal plates have the general form 

E= 
1.i 

u; [a(kl, kJexp(ik. r)+a’(kI. k2) 
--oc 

x exp(ik’ Y)] dk, dk2 ( I3a) 

H= 
ss 

n [k x a(kl, k*)exp(ik. v) 
--cc 

+k’ x a’(k,, k2)exp(ik’.v)]dkl dk2 (13b) 

where k represents a wave traveling in the positive z 
direction where k’ represents a wave traveling in the 
negative z direction. Utilizing the simple boundary 
conditions given by equation (11) at z = [and the more 
complex boundary condition given by equation (8) at 
the source surface we may solve for the amplitude of 
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the electromagnetic field vectors, i.e. a(ki, k,) and For a given value of ki and kZ, as k varies so does k3, 

a’(kI, k,) in terms of the spatial amplitudes g(kI, k2) of and since at low temperature 1 Z&f 1 >> 1 as k varies, 

the lateral source field. The justification of the use of the function P,(k) is sharply peaked at values of 

this more complex boundary condition at x = 0 will k3 1% rn, when r is a positive integer. The function 

become apparent later in this analysis. Using these P,(k) can therefore be considered to be a set of delta- 

results in equation (13b), we find, using equation (lo), function-like spikes, so that the total unidirectional 

that the Poynting vector at the second surface is given heat transfer due to traveling waves is simply the sum 

by 

k2 

I(k+Z,kJZ)exp(ik,I)+(k-Z,k,/Z)exp(-ik31)IZ 

k: 
fl(k3+Zok/Z)exp(ik3f)+(k3-Z,k/~)exp(-ik31)~2 1 dki dkz. (14) 

This expression gives the unidirectional spectral heat 
flux between two parallel infinite metal surfaces having 

a spacing distance I and a surface impedance 2. We 
have further assumed that Z is given by EASE theory 

which means that the surface impedance is independent 
of temperature. This allows the net spectral heat flux to 
be determined by simply applying the principle of 
superposition. 

The total unidirectional heat transfer is given by 

integrating the expression for the unidirectional spec- 
tral heat flux given by equation (16) over all frequencies. 
Two different contributions are presented-one associ- 
ated with traveling wave modes and the second 

associated with the quasi stationary modes of the 
radiation field. The traveling wave modes correspond 
to those frequencies defined through the inequality 

0 < kf + k: < k2. For these modes, k3 is obviously real 
and hence these waves propagate freely. The quasi- 
stationary modes of the thermal radiation field, on the 
other hand, correspond to those frequencies which are 

defined through the inequality k2 < k:+ k: ,< co. For 
these modes, k3 is obviously imaginary and therefore 

these solutions correspond to modes of the radiation 
field that are exponentially damped in the direction 
normal to the metal surface. 

HEAT-TRANSFER EFFECTS 

As has been indicated, the traveling wave portion of 
the unidirectional heat transfer is defined by values of 
the propagation vector for the lateral field satisfying 
the inequality 0 ,< kf + k: < k’. Hence, from equation 
(16) utilizing equation (5~) the spectral unidirectional 
heat flux due to traveling waves is given by 

zoc Re@) 
P,(k) = 3 --2- ~~%b) 

167-t IZ)’ exp(hw/KT- 1) 

1 
X 

lcosk,I+i(Z,k&k)sink,112 

1 

+/kk31+i(Z0k/Zk3)sink,I12 dkldkz’ (17) 1 

of the contributions of each of these spikes. If the more 
complex boundary conditions given by equation (8) had 
not been utilized in deriving equation (16), then the 

term cos k3 I would be absent in equation (17) and the 
contribution of each spike would be infinite. We deter- 

mine the contribution of each spike by expanding the 
terms cos k3 1 in the denominator of equation (17) about 
rn in a narrow region, i.e. k3 I= rn + (1, thus cos k3 1 z 1 

and sin k31 x cl where [ is a new variable. Once a 

particular spikeis considered and the above expansions 
have been implemented within the integrand, then the 
limits of integration are extended to infinity; this does 

not affect the result to any degree, since the main 
contribution to the spike is in the region where 1~ 1, 

but does lead to a well defined result for the integration. 

Adopting this approach, the total unidirectional heat 
flux due to traveling waves can be shown to be given byt 

pr= c s P,(k) dk 
spikes spike 

%b4hW 

exp(kwKT- 1) 

where 

x 1,; dk1dk2 
[ 1 (18) 

k3=y. 
For two similar infinite metalsurfaces of infinite extent 

at large spacing distances in the EASE regime, the 
unidirectional heat transfer is given by 

P, = &uT4 

where it follows from equations (7) and (14) and the 
usual integration over the blackbody spectrum that 

tTo arrive at this form of equation (18) we have utilized 
the fact that 4[Re(~)]2//Z\Z is unity which follows from 
equation (7). 
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Introducing the nondimensional spacing distance a = 
KTl/hc and the above result we can write equation 
(18) in the following nondimensional form 

The nondimensional unidirectional heat transfer P,/P, 

due to traveling waves predicted by equation (21) is 
shown in Fig. 1 as a function of the nondimensional 

spacing distance a. Departures from classical theory 
for the traveling wave components occur where non- 
dimensional spacing distance satisfies the inequality 
a < 0.1, i.e. 1T < 0.1 cm “K. In this nonclassical range, 

the unidirectional heat transfer due to traveling waves 

is given by 

3r(11/3)i”( 1 l/3) 

pr’p= z 4r( 14/3)i( 14/3)a 
(22) 

so that the unidirectional heat transfer due to traveling 
waves for a < 0.1 is given by PJP, z 0.216/a. The 

author has previously derived this result using alternate 
techniques and discussed the physical reasoning behind 

this result [ 151. 

For the total heat transfer due to quasi-stationary 
waves, we have starting from equation (17) that 

3c 

P, = P,(k) dk = Q 
II s 7 hw 

,, exp(hru/KT- 1) 

1 
X -----~? 

Icoshr/+(Zoa/Zk)sinh?II- 

1 
~___ lxda dw (23) 

+/coshal+(Z,,k/Za)sinh~l(’ 1 I 
where we have utilized the relationship that the factor 
Z,cc,(~)Re(.Z)/I21~ appear in equation (17) is unity. 
The parameter c( occurring in equations is defined by 

k3 = ia where CI is real since in the quasi-stationary 
region k: = kZ - (k: + kg) < 0. 

Next in equation (23) we utilize the expression for 
Pm given by equation (19), introduce the changes in 
variable .x = hw/KT, LX’ = al, introduce the nondimen- 
sional spacing distance a = KT1/m5c, to obtain the 
following expression for the unidirectional heat transfer 
due to quasi-stationary waves 

Present theory 
metal at IOV 

Ten times surface 

IO6 
Theory of Caren end Liul21 
Boehm and Tien 131 

Measurements copper to 

10-4.5” K 0 

II-4.5”K CJ 

IO4 

o8 IO3 

\ 
0 

IO2 

p02 / P, - Standard metal 

IO * Surface Impedance 
of standard metal 

lO”j IO4 KY3 102 lb’ IO0 IO' 
0 

Fro. 1. Nondimensional unidirection radiant heat transfer 
as a function of nondimensional spacing distance. 

We denote the contribution of the first double integral 
on the right side of equation (24) as Pql/Pm and the 

second double integral as P&P,. For the “standard 
metal” the contributions due to these two factors are 
shown in Fig. 1 for T = 10°K. Calculations of these 
quantities at other values of the parameters Z* and T 
show that Pql/P, defines a universal curve independent 
of Z* and T whereas Pq2/PE is dependent on Z* and T. 
The superposition of the various heat fluxes PI/P,>, 
P+/P%, and Pq2/Pm is shown in Fig. 1 for the standard 
metal at T = 10°K. Also shown as isolated data points 
on this same figure are the limited experimental data 
points on this same figure are the limited experimental 
data of Cravahlo, Domoto, and Tien [S] and Domoto, 
Boehm and Tien [9] taken for copper surfaces near 

3 

s 

XI 
P,IP, = Pq,IP, I-P,,/P, = 

x 

16U14/3)<(14/3)a2 o expx-1 

X t(’ 
-2’3F a~2'3xS'3 sinha' 

dx. (24) 
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10°K. Since their data showed an emittance at large 

spacing distances approximately ten times that given 

by EASE theory, a second curve has been developed in 

Fig. 1 P&Pm for ten times the surface impedance of the 
“standard metal” to illustrate the effect of more 
common surface conditions that are met in engineering 
practice on the heat transfer. We shall show sub- 
sequently that when we consider the nondimensional 

heat flux, only PqZ/Pm is a function of the surface 
impedance. Also shown in Fig. 1 are the predictions of 
the previously discussed theory of Caren and Liu [2] 
and Boehm and Tien [3]. As previously discussed, this 

latter theory is based on the assumption of a well 
characterized isotropic thermal radiation field per- 
vading the metallic medium coupled with radiation 

tunneling between the medium as developed by the 
present author using electromagnetic boundary value 
theory [ 11. Rytov [5] has shown, however, that no such 

radiation field can exist within a highly absorbing 
medium. It is readily apparent that these earlier 
theories, although providing results similar in form to 

the present theory, are quantitatively different and do 
not show the agreement with experiment provided by 

the present theory. As can be seen in Fig. 1, the results 
of the present theory are consistent with the limited 
experimental data for heat transfer at small spacing 

distances at 10°K. However, more experimental data 
are certainly desirable to verify the results of this theory 

at smaller values of the nondimensional spacing 
distance. To provide a better understanding of the 

dependence of the unidirectional heat transfer due to 
quasi-stationary waves on the temperature, spacing, 

and surface impedance of the metal surface, we will 
next provide accurate analytical approximations for the 
double integrals appearing in equation (24). Consider 
first the double integral representing the term P,,,/P, 
in equation (24). We are interested in values of the 
nondimensional spacing parameter a < 10-l. There- 

fore, in the integral with respect to CI’. the term 
h2’3/4nZ*K2’3a >> 1; in fact for the “standard metal” 
where u = lo-‘, we have h213/4nZ*K213a % 105. Thus, 
as is obvious in a self-consistent type of argument, the 
integral with respect to CI’ has its significant contribu- 
tions for a’ x 1, we have that the principal contributions 
to the integral with respect to M’ are for a’ small. Thus, 
we approximate sinh ‘I’ in the denominator by r’ and 
the term cash G! by unity. A straightforward integration 
of the resulting expression yields 

7c?-( 11/3)<( 1 l/3) 
Pq,lP, * - - for a 5 1. (25) 

4&14/3)<(14/3)a 

Numerical evaluation of the corresponding double 
integral in equation (24) shows that this approximation 
is good to 3 per cent in the range for which a 5 10-l. 
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It indicates further that this contribution to the heat 

transfer due to quasi-stationary waves expressed in 

terms of the above nondimension parameters is in- 

dependent of the variables of surface impedance and 

temperature. Its variation with spacing distance exactly 
reflects the same inverse spacing distance dependence 
as the contributiondue to traveling waves for a < lo- I. 
Consider next the expression for Pq2/Pra given by 
equation (24). since in the integral with respect to ~1’ 
the parameter nh 2’3/4Z*K2’3 >> 1; in fact for the 

“standard metal” nh2i3/4Z*K213 - 3.3 x 104,for values 
of a such that nh2’3a/4Z*K2’3 >> 1 we neglect. the term 

cash a’ in the integral with respect to r’. Thus, for the 
“standard metal” where a 2 1O-3 or in general when 

(I >, 40Z*K2!3/nh2!3. we find that 

9Z*r(4/3)i(4/3)5(3) KT 2’3 

““‘,’ = &?I-(14/3)i(14/3)n4 h i > 
6’6) 

Numerical evaluation of the double integral for Pq2/P, 
appearing in equation (24) shows that equation (26) is 

accurate to better than 10 per cent over the ranges of 
a indicated above. Where a is quite small, i.e. 
nh2’3a/4Z*K2’3 cc 1, we may neglect the corresponding 
terms in the denominator of the integral with respect 

to a’, thereby retaining only the term coshcc’ in the 
denominator. Thus, for the “standard metal” for 

aslo-5 or in general for we find that 

Numerical evaluation of the double integral for Pq2/P, 
appearing in equation (24) shows that equation (27) is 
accurate to better than 10 per cent over the ranges of a 
indicated above. As can be seen from Fig. 1, the 

component Pa2/Pm of the quasi-stationary radiation 
field dominates the heat transfer for a <, 10e2. 
Equations (26) and (27) show that in distinction to the 

components P,/Pm and PqIIPm, the components P,,/P, 
of the heat transfer is dependent on the surface im- 

pedance and surface temperature. Its dominance at 
small values of a comes from the strong inverse power 
dependence of the magnitude of this component of the 
heat transfer with spacing. 

SUMMARY AND DISCUSSION 

This analysis has addressed radiation heat-transfer 
effects between closely spaced metal surfaces at low 
temperature considering as the source term the small- 
scale centers of thermally induced polarization at the 
metal surface. According to Leontovich and Rytov, 
these centers have a spatial extent on the order of the 
electron mean free path in the metal. For a metal at 
low temperature, the mean free path A is long; and 
since the skin effect is well developed, the skin depth d 
is quite small, so that d/A << 1. Thus, to an external 
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observer, the source regions have finite lateral extent 
but no depth. Hence, the polarization giving rise to the 
external field is in the plane of the surface and in turn 
gives rise to a lateral electron field at the surface of the 
metal. The standard electromagnetic boundary con- 

ditions then demand the presence of an equal lateral 
field exterior to the metal. Rytov has derived the 
correlation function for the lateral field and shown that 

the propagation vector associated with the lateral held 

extends over the range 0 < k: +ki < X. For each 
wavelength of the thermal radiation field in the vacuum? 

therefore. this lateral source field gives rise in the 
vacuum region bounding the metal to both real 

traveling waves for 0 < kf + ki < k2. i.e. k, is real, and 
to quasi-stationary waves for k2 < kt + kj 6 XI, i.e. k3 
is imaginary. The quasi-stationary field is a near surface 

field since k3 is imaginary. and therefore this component 
is experimentally damped with increasing distance from 

the surface. The traveling wave field, on the other hand. 
gives rise to the thermal radiation observed at large 
distances from the metal surface, i.e. to the classically 

observed thermal radiation phenomena. The source 
strength of the thermally induced lateral field is deter- 

mined by equating the formally derived Poynting flux 

from the surface derived in terms of the undetermined 
strength of the source field to the classical radiant 

emission P(U)) = r~~~,&,~,~ from the surface. In this latter 
expression. erred is determined by the electrodynamic 

characteristics of the metal as given by EASE theory. 
The present results are limited. for convenience, to the 
analysis of the unidirectional heat flux from a metal 
surfaceat low temperature to a second low temperature 

metal surface in close proximity. However. since in the 
EASE region the surface impedance is independent of 
temperature. net radiant heat transfer can be deter- 

mined by a straightforward application of the super- 
position principle. Starting with the temperature- 
dependent correlation functions for the lateral held and 
using the standard electromagnetic boundary condi- 
tions. the amplitudes of the electric and magnetic field 
vectors are determined. In this analysis. only one wall 

is assumed to be a source. The resulting spectral heat 
flux to the opposing (receiving) wall is determined by 
the application of the Poynting theorem at its surface. 
The integral of the resulting expression over all 
frequencies provide the total unidirectional heat flux. 
The expression for the total unidirectional heat flux 
contains three terms. a contribution due to traveling 
waves [see equation (21)] and two distinct contribu- 
tions due to quasi-stationary waves [see equation (24)]. 
The contributions due to quasi-stationary waves pro- 
vide negligible contributions to the unidirectional heat 
flux at large spacing distances while the contribution 
due to traveling waves provides the classical heat 
transfer equation, i.e. P,!P, = 1. for nondimensional 

spacing distances satisfying the inequality LI 2 1. i.e. 

I 2 2.51,. In the range of nondimensional spacing 
distances bounded approximately by lo- ’ < a ,< I ~ the 
unidirectional heat flux increases over the value at 
infinite spacing distances with approximately equal 
contributions (see Fig. 1) due to traveling waves and 

the component of the heat transfer due to quasi- 
stationary waves defined as P,, /P, [see equation (24)]. 

These contributions. when written in the nondimen- 
sional form graphically illustrated in Fig. I, are 

independent of surface temperature and surface im- 
pedance. For nondimensional spacing distances satis- 
fying the inequality of 5 lo- ‘, both of these 
contributions increase indirect iyverse proportion to 

the nondimensional spacing distance [see equations 

(22) and (25)]. For smaller nondimensional spacing 
distances, i.e. N 5 lo- ‘, the unidirectional heat flux is 

dominated by a shorter range component of the con- 
tribution, due to quasi-stationary waves. which is 
defined by the term P,,/f,X appearing in equation (24). 

When written in the nondimensional form as depicted 
in Fig. 1. this term is dependent on the surface 

temperature and surface impedance [see equations (26) 
and (27)]. To provide a physical insight into the above 

summary of the major findings of this paper. first 
consider the contribution of the traveling wave com- 

ponent to the unidirectional heat Hux. The traveling 
waves emitted by a free surface undergo multiple 
reflections when a second parallel metal surface is 
present. Providing the conductivity is high, this will 
lead to a buildup in the field strength in the cavity fool 

those wavelengths and directions of propagation that 
lead to antinodes at the metal surfaces, i.e. to normal 
modes in the cavity. Consider now the energy density 

in a rectangular cavity two large dimensions I, and /2. 
and one small dimension 1. Assume further that the 
temperature of the cavity is such that i_, x 1. The 
normal modes of the electromagnetic field in the cavity 
arc given by the relationship [ 1 h] 

(02, ,112 .l,, = (2x)Z:E.; ,.,) I,n, 

= n’c+I~//: + &!I: +&V:, (2X) 

where the integers or. ,r2, rr3 arc restricted such that two 
or more of the integers nr. tr2. n3 must be nonzero. 
Therefore, it follows that all modes for which n3 # 0 
essentially do not contribute to the thermal radiation 

density since i,,,,l,,, << i,. Thus. the modes that do 
contribute to the thermal radiation density are those 
for which 11~ = 0. There is a large number of such 
modes. since for large values of I, and /2 there will be 
a large number of combinations of integers 11, and 11~ 
for which ,$,I,,,,0 z i,,. Under these conditions, as the 
small dimension I of the box tends toward zero. the 
number and. therefore, the total energy associated with 
these modes remains fixed. yet the volume containing 
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this total radiant energy decreases as I and thus the 
corresponding energy density increases as l/I. Since the 
breakpoint for the energy density should occur where 
lx Am, we should expect for small values of 1 that 
V z V&m/l) or V x V,(O.4/& Now the unidirec- 
tional heat flux to the second wall is given approxi- 
mately by P = i/a?ccV where a is the “spectral average” 
of the absorbtivity of the walls or P/P, v V/V,, so 
that we would anticipate that P/Pen =: 0.4/a. 

Our rigorous calculation provided by equation (22) 
gives PJP, = 0.216/a. Thus, the above discussion pro- 
vides us with a good insight into the behavior of the 
traveling wave contribution to the unidirectional heat 
flux at small spacing distances where correlation in the 
source term has not been considered. Consider now the 
contribution to the unidirectional heat flux due to 
quasi-stationary waves. Consider the magnetic field 
vector near an isolated metal surface defined in terms 
of the strength of the later source field using the simple 
boundary condition given by equation (8); we have then 

Li=A 
0 B 

O” [k x a(kl, kz)] exp(ik . v)dkr dkz (29) 
-CD 

where 

al = -91. a2 = -g2. 
k, g, + k2g2 

a3==------. 
ks 

We choose to compute the quantity (H .H*) since this 
is both a measure of the field strength and would be 
proportional to the heat flux [see equation (IO)] 
transferred to a second parallel metal surface in the 
vicinity of the source surface where multireflection 
effects are not of sig~ficance. For a lateral source as 
provided by equation (2a), we find that for the con- 
tribution due to quasi-stationary waves, i.e. kf + ki > kZ 

where we have used the notation k3 = ice. Consider 
now the first item in the expression for (H. H*),,,, 
which corresponds in the present approximations to 
the term giving rise to the component Pql/Pco in 
equation (24), we have that 

This integral is divergent because we have utilized the 
approximate boundary condition given by equation (8) 
in order to derive simple expressions which lead more 
readily to physical interpretations rather than the exact 
boundary given by equation (6) in deriving this result. 
The more exact boundary condition essentially leads to 
a quite small but finite lower bound on cx [from 
equation (24)]; for example, we can find that effectively 
the lower bound on M is given by cc, PZ 10-2) which we 

will assume to be present in equation (31). Hence. the 
principal contributions to the integral will be for o! > Q, 
but at the same time for 0: IZ! CQ, , under this condition 
exp( -al) “v 1. This latter approximation follows since, 
as can be deduced from Fig. 1, for cx, x 10e2 the range 
of values of I for which Pql jP, make significant 
contributions will correspond to a,l< 1. Thus, in the 
range of values of I 5 lj$, z several centimeters we 
have that 

The field strength is thus independent of distance from 
the metal surface providing I 5 l/aL . Also note that a 
small but approximately fixed range of values of the 
lateral propagation vector in the lateral field contribute. 
namely, those values for which (k:+ k:) > kZ but for 
which also (k:+ k:) N k2, i.e. those values for which 
k2 -(kf + k$ rr CY~. As a second metal surface is brought 
near the source surface due to the strong unattenuated 
nature of this term for 16 l/crL, the field strength will 
be built up in direct proportion to the numbers of 
multiple reflections or equivalently proportional to l/2. 
Analogous to the traveling wave case, the energy 
density due to this component of the quasi-stationary 
field will increase in direct proportion to l/t, i.e. indirect 
inverse pro~rtion to the non~mensional spacing 
distance, and will build up to a value independent of 
the strength of the source term. Hence the unidirec- 
tional heat-transfer effects due to this term in the 
quasi-stationary field should be directly proportional 
to the inverse of the nondimensional spacing distance 
and depend only on the absorptance (emittan~e) of the 
receiving surface. Thus, written in nondimensional 
terms, this term should lead to a unidirectional heat 
flux which is independent of surface impedance. This is 
confirmed by the exact evaluation of the term P,,/P, 
in equation (25) which are depicted in Fig. 1. Consider 
now the term P&P, in equation (24). The analogous 
term in our approximate expression for the magnetic 
field strength due to an isolated surface given in 
equation (30) is 

2nC R’ 
(H .If*)tanz = __ 

Z;k2 j 
exp( - 2af)rr3 dcc. (33) 

0 

Equation (33) can be integrated to yield 

The integral in equation (33) can be interpreted 
physically as a superposition of a continuum of quasi- 
stationary waves with a high density at large values of 
c( (increasing as a3) which contribute significantly only 
if ctl < of 1. Thus, with decreasing spacing distance the 
number of waves able to reach over to the second 
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surface is the dominant factor and not multiple re- 

flections of the less spectrally dense, more weakly 
attenuated waves. Thus, a volumetric effect in the 

6 

energy density is not involved in relating equation (30) 

to the unidirectional heat transfer. The magnitude of 7 

the unidirectional heat-transfer effects are dependent in 

this case on the source strength (which is directly 8 

proportional to the surface impedance) and the ab- 

sorbtivity of the second surface (which is also directly 

dependent on the surface impedance). Thus, written in 
our standard unidirectional form, we would expect 9 

P,JP,,_, to be dependent on surface impedance. 

IO. 

REFERENCES 

R. P. Caren. The theory of electromagnetic tunneling 
of thermal radiation between highly absorbing media. I I. 

1953; (Trans. H. Erkuu, Air Force Cambridge Research 
Center, Bedford Mass., 1959). AFCRC-TR-59-1962. 
P. Polder and M. Van Hove. Theory of heat transfer 
between closely spaced bodies. Phys. Rrl:. 4B(lO). 3303 
(1971). 
C. M. Hargreaves, Anomalous radiative transfer between 
closely spaced bodies. P~JX Lett. 30A(9). 491 (1969). 
E. G. Cravahlo. G. A. Domoto and C. L. Tien, Measure- 
ments of thermal radiation of solids at liquid-helium 
temperatures, in Prqr~‘ss irl Astvorlautics cmd Awe- 
rlautics. edited by J. T. Bevans. Vol. 22. Academic Press. 
New York (19%). 
G. A. Domoto. R. F. Boehm and C. L. Tien. Radiative 
transfer between metallic surfaces at cryogenic tcmpera- 
turcs. J. Heat Tran+r 92C(3). 412 (1970). 
M. A. Leontovich and S. M. Rytov. On a differential law 
for the intensity of electrical fluctuations and the in- 
fluence of the skin-eflcct theorem. Zh. Eksp. Trwr. FL. 
23(3). 246 (1952). 

Proceedings of the Fourth Symposium on Therm~ph~sicul 
Prowrtirs. D. 243. ASME. New York (1968). 12. 

R. i’. Care; and C. K. Liu. Emission. t&al internal 
reflection, and tunneling of thermal radiation in metals. 
in Progress in Astronmtics and Awona~rric~s. edited by 13. 
J. T. Bevans. Vol. 21. p. 509. Academic Press, New York 
( 1969). 14. 
R. F. Boehm and C. L. Tien. Small spacing analysis of 
radiation transfer between parallel metallic surfaces. 15. 
J. Heat TmnsjLv 92C(3). 405 (1970). 
E. G. Cravahlo. C. L. Tien and R. P. Caren. E&t of 
small spacings on radiative transfer between two 
dielectrics. J. Heat Tran$vr 89C. 35 1 (1967). 16. 
S. M. Rytov. Theory of electrical fluctuations and 
thermal radiation, Academy of Sciences Press, Moscow. 

L. D. Landau and E. M. Lifshitz. Elrctrorl~rlurnic,.s of 
Cmtimrolr.s Media. Pergamon Press, Oxford (1960). 
F. Slern. Elementary theory of the optical properties of 
solids, in Adctrnws in Solid State Physics. Vol. 15. D. 392. 
Academic Press. New York (1963): 
R. B. Dingle. The anomalous skin effect and the rc- 
Hectivity of metals, Physicu, ‘s Grur. 19. 311 (1953). 
J. L. Olsen. Electrorl Trtrrlspurr in Mrtals. p. I OX. Intcr- 
science. New York (1962). 
R. P. Caren. Radiation heat transfer betaccn closely 
spaced metal surfaces at low temperature--the impact 
of discrete modes of the radiation field. .1. Hraf Trtrurfiv. 
94C(3). 295 (1971). 
W. H. H. Panofsky and M. Philips. Clussicul E/ecrricir\, 
turd Magrwtism. p. 191. Addison-Wesley, Cambridge. 
Mass. (195.5). 

RAYONNEMENT THERMIQUE ENTRE SURFACES METALLIQUES TRES PROCHES, 
A BASSE TEMPERATURE, DU AUX COMPOSANTES PROGRESSIVES ET 

QUASI-STATIONNAIRES DU CHAMP DE RADIATION 

R&me---On analyse le rayonnement B basse tempirature entre des surfaces mCtalliques parallCles t& 
proches. La thtorie considire les champs Clectriques fluctuants thermiquemcnt induits B la surface du 
mktal. semblables g ceux qui sont responsables du bruit de Nyquist, et sources du champ de rayonnement 
thermique dans I’espace vide entre les mttaux. On montre qu’il existe dans I’cspace vide B la fois une 
onde progressive et une onde quasi stationnaire. Les vecteurs associt-s aux champs Clectrique et 
magnttique qui existent dans I’espace vide sont determinis en utilisant la theorie classiyue des frontitres 
&lectromagn&tiques et les flux thermiques unidirectionnels sont calcul.% en utilisant le thkorttme de 
Poynting. Les flux thermiques correspondent g des effets importants et insoupConnCs quand le produit 
dc la distance I i la tempkrature des surfaces T est infkrieur B 1 cm K. Aux faibles valeurs de I le flux 
thermique varie tout d’abord comme l’inverse de I, puis quand IT < 10~ ‘cmK, le transfert uni- 
directionnel croit proportionnellement i la quatrieme puissance de ce produit. On constate que ces 

rCsultats sont conformes aux mesures expCrimentales antirieures. 

WARMESTRAHLUNG ZWISCHEN DICHT GEGENfiBERLIEGENDEN METALLISCHEN 
OBERFLACHEN BE1 TIEFEN TEMPERATUREN AUFGRUND DER WANDERNDEN 

UND QUASI-STATIONAREN KOMPONENTEN DES STRAHLUNGSFELDS 

Zusammenfassung-Es wird die WPrmeiibertragung durch Strahlung bei tiefen Temperaturen zwischen 
dicht gegeniiberliegenden. parallelen metallischen OberflHchen untersucht. Die Theorie beriicksichtigt 
thermisch induzierte, wechselnde elektrische Felder an den metallischen Oberfllchen wie jcne. die das 
Nyquist-Rauschen verursachen, als Quelle fir das W%rmestrahlungsfeld in dem leeren Raum zwischen 
den Metallplatten. Es wird gezeigt. dal3 sowohl wandernde als such quasi-stationxre Wellenkomponenten 
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des Warmestrahlungsfelds als Folge dieser Quellen im Vakuumbereich existieren. Die diesen Feldern 
im leeren Raum zugeordneten elektrischen und magnetischen Vektorfelder sind unter Anwendung der 
gellufigen elektromagnetischen Randtheorien abgeleitet, und die einseitig gerichteten Warmefliisse sind 
unter Verwendung des Poynting-Theorems berechnet. Es wird gezeigt. da8 die resultierenden Warme- 
strijme zu sehr ungewohnlichen Auswirkungen der Wlrmeiibertragung in Beziehung stehen, wenn das 
Produkt der Entfernung 1 und der Temperatur T kleiner als 1 cm K ist. Bei kleinen Entfernungen nimmt 
der Wlrmeflug umgekehrt proportional zur Entfernung zu. und wenn I. T < 10mZcmK ist. nimmt der 
ungerichtete WBrmefluB umgekehrt proportional zur 4. Potenz dieses Produkts zu. Es wird berichtet. 

da0 die Ergebnisse dieser Theorie mit vorangegangenen experimentellen Messungen tibereinstimmen. 

JIYYMCI-bII;I TEIIJIOl-lEPEHOC HPM HM3KOfi TEMIIEPATYPE MEKaY EiJIM3KO 
PACI-IOJIO~EHHbIMkl APYI- K APYI-Y METAJUIMYECKWMki l-IOBEPXHOCTJ-IMM 

3A C=If?T IlOABM2(HbIX I4 KBA3kiCTAUkiOHAPHbIX COflABJUUOQkiX 
IIOJIJI I43JIYYEHWI 

AHHoTaqHR-AAHanU311pyH3Tcff 3+$eKTbI nywcTor0 TennonepeHoca Mewy ~JIA~K~ pacnonomea- 

HblMU Apyr K Apyry uap&,U,e,lbHbIMH MeT&'lJUiYeCKEiMH IIOBepXHOCT5tMEi ItpH HU3KOft TeMnepaType. 

TepMwieCKH HHAyullpOBaHHble @JtyKTyauHOHHble 3JteKTpWieCKIle IIOJITIR Ha MeTaJIJlWieCKOii nOBepX- 

HOCTU, aHaJIOrA~HbIe nOARM, CO3AaloIUElM lJ.lyMbI HaiiKBliCTa, paCCMaTpHBaIOTCff KaK WCTO'iHlfKU 

nOJIR TeIlAOBOrO H3Ay'ieHW-I B BaKyyMHOM npOCTpaHCTBe MeKAy MeTaJIJIFieCKUMH nOBePXHOCTSlMW. 

nOKa3aHO,'JTO 6naronapa JTHM UCTOYHhfKaM B 6aKyyMHOii 30He LiMelOT MET0 KBK Geryqax BOAHa 

nOnR TennOBOrO H3nfleHH2,TaK U KBa3ACTaUIIOHapHaR BOnHa. C UOMOLUbH) 06IuenpuHxTofi 3neK- 

TpOMarHLiTHOfi TeOpHH IIOrpaHHYHOrO CAOII BbIBOAllTCR BeKTOpbI 3JIeKTpWSeCKOrO II MBrHWTHOrO 

nOJIe#,XapaKTepHbIe AJUI nOAefi B BaKyyMHOM npOCTpaHCTBe,a UOCpeACTBOM TeOpeMbI nOi%HTHHra 

PaCCYATbIBalOTCR pe3yAbTlipyIOWHe OAHOHanpaBJIeHHbIe TeIlJIOBbIe IIOTOKU. nOKa3aHO,YTO pesynb- 

TII~y~OU(UeTen~OBbIenOTOK~COOTBeTCTByIoTBBb~ClIle~CTeneHAHeK~aCC~~eCK~M3~~KTaMTenAo- 

nepeHoca, KorAa npouseenesue paccTonHusi MemAy UoBepxHocTnMw I Ha TeMnepaTypy nosepx- 

HOCTA TOKa3bIBaeTCff MeHbUle 1 CM%. npA He6OnbtUAX 3a3OpaX TeJIJlOB0i-i nOTOK CHaYana paCY8T 

06paTHO nponopunoaanbso nenminne sasopa, a 3aTeM npe lT~1be2 CM% OAHOHanpaBneHHbIti 

TennonepeHoc BospacTaeT 06paTHO nponopwioHanbH0 qeTBepToR cTenew4 3Toro npoe3se~em.f5f. 
nOKa3aH0, 'iT0 3Ta TeOpHK COOTBeTCTByeT 3KCnepAMeHTaJIbHblM AaHHbIM PaHee npOBeAeHHblX 


