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Abstract—Radiant heat-transfer effects between closely spaced parallel metal surfaces at low temperature
are analyzed. The theory considers thermally induced fluctuating electric fields at the surface of the metal,
similar to those responsible for Nyquist noise, as the source of the thermal radiation field in the vacuum
space between the metals. Both traveling wave and quasi-stationary wave components of the thermal
radiation field are shown to exist in the vacuum region due to these sources. The electric and magnetic
field vectors associated with these fields existing in the vacuum space are derived utilizing standard
electromagnetic boundary theory, and the resulting unidirectional heat fluxes are calculated using the
Poynting theorem. The resulting heat fluxes are shown to correspond to highly unclassical heat-transfer
effects when the product of spacing distance [ and the surface temperature T is less than 1 cm °K. At small
spacing distances the heat flux first rises in a manner inversely proportional to the spacing distance and
then where IT < 10~ 2cm°K, the unidirectional heat transfer rises inversely proportional to the fourth
power of this product. The results of this theory are shown to be consistent with previous experimental

measurements.
NOMENCLATURE Pk), spectral unidirectional radiative heat flux
KTI I ' . due to quasi-stationary waves [W/cm?];
a, = e 0-404 T [nondimensional P, total unidirectional heat flux due to quasi-
' . m length]; stationary waves [W/cm?];
¢ velocity of llght [em/s]; P(k), spectral unidirectional radiative heat flux
c  opay() _ ' per mode'd}le to.traveling waves [ W/cm?];
, = Iy, , correlation function; P, total unidirectional heat flux due to

traveling waves [W/cm?];
P(k), Poynting flux per mode [W/cm?];

- 13172 3 -17.
‘:’ elef:zt{'lilcaccltl);r esE((]Jr]l .depth [em™']; P, total unidirectional heat flux [W/cm?];
E’ . g i P, total classical unidirectional heat flux
, electric field vector; [W/em?];
Z’ Planck’s constant [J-s]; Ry normal re,ﬂectance'
H’ =h/ 2”3 s, surface area [cm];
, magnetic field vector; T temperature [°K];
Iw’ . . . bl b s .
0 spectral blackbody intensity; U, total energy density for finite cavity
k 2n [3/em’];
k, — __ electromagnetic propagation U, total energy density for infinite cavit
lk| A ’
; vector [em™']; [J/em?];
. Up, Fermi velocity;
ky, k3, ks, Cartesian components of propagation I; cavit volumey [em];
X Eecltor; i - Z,, = \/%/a, impedance of free space;
, oltzmann’s constant [3/°K]; Z, surface impedance of a metal;
A spacing distance [cm];
m, electronic mass [kg]; Z* - 1 2_” w r "
N, electron density [e/m?]; ’ 1-1547/ \ w, énc/
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Greek letters

oy (w), normal spectral absorptance of cavity
wall;

o, delta function;

g, electrical capacitivity of free space [F/em];

T hemispherical emittance;

I'(x). gamma function;

A wavelength of electromagnetic wave [cm];

As wavelength of maximum spectral intensity
= 2898 x 1073/T [em];

A, electron mean free path [em]:

78 magnetic permeability of free space
[H/em];

v frequency of electromagnetic wave [s™'];

o, Stefan—Boltzmann constant
[W/em? °K*];

a, electrical conductivity [Q~ */cm];

w, angular frequency of electromagnetic
wave;

W, = (Ne/me)'/?, plasma frequency;

Cla) Riemann zeta function.

INTRODUCTION

SEVERAL earlier papers have addressed the theory of
nonclassical radiative heat-transfer effects between
closely spaced metal surfaces at low temperature
[1, 2, 3] These analyses predicted radiation heat-
transfer effects between closely spaced metal surfaces
based on the assumption of an isotropic thermal
radiative source field consisting of undamped plane
waves interior to the metals and the use of standard
electromagnetic boundary theory to predict the heat
transfer through the calculation of a transmission
coefficient between the metal surfaces through an
intervening vacuum region [1, 3]. In these analyses
both wave interference and tunneling effects are present
[4]. Rytov has pointed out [5] that the concept of a
thermal radiation field interior to a metal is invalid and
that a proper analysis begins with the treatment of the
thermally induced fluctuations of carrier or current
density in the metal surfaces as the source of the
exterior radiation field. This model leads to the concept
of a corresponding thermally induced lateral electric
or magnetic surface field as the source field for radiative
heat transfer for a metal in which the skin effect is well
developed. Polder and Van Hove [6] have published
a generalized theoretical analysis of radiative heat
transfer between metallic surfaces in the vein of Rytov
[5] using a thermally induced surface current source
term and a generalized model for the electrodynamic
properties of the metal surface. These results depend in
such a complex manner on the dielectric properties of
the metal that they do not lend themselves to even
qualitative conclusions on the variation of heat-transfer

effects with material changes. However, Polder and Van
Hove numerically calculate the spacing dependence of
the radiative transfer between two chromium surfaces
near room temperature and find semiquantitative
agreement between their theory and the experimental
measurements of Hargreaves [7]. They ascribe the
differences between their theoretical predictions and
Hargreaves measurements to their use of the diclectric
properties of chromium based on the bulk measure-
ments in contrast to the presumed differing dielectric
properties of the thin chromium films used in
Hargreaves experimental measurements. The present
analysis addresses the problem of heat transfer between
highly conductive metal surfaces at low temperature
using the methods developed by Rytov where it is
assumed that the extreme anomalous skin effect (EASE)
theory will describe the electrodynamic properties of
the metal and further that the skin effect is well
developed, i.e. only a thin surface layer of the metal
is responsible for the emission and absorption of
radiation. Under these assumptions the dependence of
the radiative heat transfer in spacing effect and electro-
dynamic properties of the metal are uncoupled and
simple approximate expressions describe the heal-
transfer effects and material dependence. The results
of this theory are in good agreement with the experi-
mental measurements of Cravahlo, Domoto and Tien
[8]. and Boehm and Tien [9] showing cnhanced
radiative heat transfer between closely spaced copper
surfaces at low temperature.

The present theory is based on the recognition that
the source of the thermal radiation in a highly con-
ductive metal is due to fluctuations of the electrons in
the metal due to temperature of the metal. The
fluctuations in carrier density give rise to the presence,
in particular, of corresponding lateral fluctuating
electric fields having all spatial frequencies in the skin
region which, by virtue of the continuity conditions
imposed on the tangential component of the clectric
field demanded by Maxwell’'s equations. result in
corresponding fields in the vacuum region surrounding
the metal. An electromagnetic wave in the vacuum
space may be characterized in part by its propagation
vector k, which will have spatial components k. k. k;
satisfying the relationship that |k|? = k}+k3+k3,
where the frequency of the clectromagnetic wave is
related to its propagation vector o? = [k|*¢2. For
electromagnetic waves of a given frequency, o =
|k|2¢? in the vacuum space for those spatial com-
ponents &, and &, of the source field (taken to be those
components in the plane of the surface) such that
k% +k?% < | k|2 then the component of the propagation
vector k3 normal to the surface for the wave in vacuo
will be real, thus corresponding to a traveling wave.
However. if ki +k3 > |k|2. then the corresponding
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wave developed in the vacuum region will have an
imaginary component for k5 and hence will be confined
to the region near the metallic surface. This wave is
termed a quasi-stationary wave. The amplitudes of the
traveling and quasi-stationary waves are determined by
the strength of the source field. In the present analysis,
the strength of the source field is determined through
the requirement that at a large distance from the
metallic surface the radiant emission observed in the
vacuum region should be given by the classical value
ey o, When eg,, 18 determined by the electrodynamic
properties of the metal. Once the amplitudes of the
electromagnetic fields present in the vacuum region due
to the source field have been determined, the heat
transfer to a second surface is determined by use of
Poynting’s theorem. In this manner, it will be shown
that both traveling and quasi-stationary waves play
nonclassical roles in the heat transfer at small spacing
distances and further that at small spacing distances
the heat transfer due to quasi-stationary waves is the
dominant heat-transfer mechanism.

METHOD OF APPROACH

Due to the finite surface temperature of the absorbing
medium, i.e. the metal surface, a random electric field is
present in the medium analogous to the electric fields
responsible for Nyquist noise. This field is the result of
macroscopic local polarizations occurring in the metal
due to thermal agitation of the microscopic charges in
the metal. Rytov [5] has shown that in a metallic
medium in which the skin effect is well developedt this
thermal agitation gives rise to a random lateral electric
field K in which components with all frequencies are
present, i.e.l§

w=ll

where the kernel g(ky, k,) of this integral is defined by

g(ki, ka)expli(k;x +k2y)]dky dk, (1)
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the following correlation function:
galky, k2)gy (K1, k3) = C0, 30 (ky —k1)O(ky —k2) (2a)

from which

KWK (X)) = 21)*Capd(x' = x")3(y' ~y") (2b)

where

wuf:; () 3)
The bar on the right-hand sides of equations (2)
represents a time or ensemble average. The correlation
function C is determined by considering the thermal
radiation emitted by an infinite metal surface due to the
random lateral surface field and noting that at large
distances from the surface the emitted radiant intensity
should be given mey,lo,. The subscripts « and § in
equations (2) refer to the two spatial dimensions in the
plane of the metal surface, i.e. those denoted by the
axes 1 and 2. The term I, is the radiant intensity for
blackbody radiation in a vacuum, The delta function
correlation for the spatial coordinates occurs only
because in deriving equations (2), Rytov averaged the
microscopic electrodynamic equations over volumes
sufficient to average out extreme fluctuations due to
the graininess of the individual atomic charges.

This procedure provides a simple delta correlation
function given by equation (1), which simply means that
our results will be valid only up to spacing distances on
the order of the correlation distance. Starting with the
lateral field given by equation (1) for, say, the first
medium and utilizing the electromagnetic boundary
conditions at the two metal surfaces, the field in the
vacuum space will be determined. Once the field in the
vacuum space due to the lateral field of the first surface
isdetermined, the thermal flux to the second surface due
to this source will be determined by the application of
Poynting’s theorem at the second surface. The net heat
transfer is simply the difference between the heat flux to
the second surface due to the lateral field of the first
surface, less the heat flux to the first surface produced
by the lateral field of the second surface.

C = IOw'

T Rytov has also provided a prescription for the correlation
function where the skin effect is not fully developed, thus
providing a basis for calculating the total radiative transfer
between surfaces under conductions where the conductivity
is not high and/or the frequencies of the electromagnetic
radiation are high.

1 The use of a correlation function that is only dependent
on the coordinates in the plane of the surface is based on the
following considerations. According to the skin effect theory
of classical electrodynamics, the internal electric and
magnetic fields generated by electromagnetic radiation in-
cident on the metal surface fall to 1/e of their surface value
in adepth d = \/2/uc’w, where d is known as the skin depth.
For example, for frequencies characteristic for low tempera-
ture thermal radiation, e.g. v~ 3 x 10'2Hz (1 = 100 um),

and for a high conductivity metal at low temperature such as
copper ¢’ = 10'°Q~ !/cm, the corresponding skin depth is
given by § = 107 ®cm or 100A. Thus, it is anticipated that
the thermal radiation from a low temperature surface should
originate from a layer near the surface with a thickness
~ 107 %cm. On the other hand, the correlation length should
be on the order of the electron mean free path [10] which for
high conductivity metals at low temperature are less than
approximately 10”*cm. Thus, the individual regions re-
sponsible for generating the thermal radiation field can be
considered to be infinitely compared to their lateral extent.
§Landau and Lifshitz [ 11, Chap. 4] also provide excellent
discussions of the nature of the lateral field and its correlation
function, although not to the depth provided by Rytov.
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The boundary conditions

For good conductors at low temperature, the
boundary conditions for determining the electro-
magnetic field in the vacuum space adjacent to the
surface is

E=Z(H xn) 4
where the surface impedance is given by [12]
2/Z, = Z**(1—i/3). (5)

The expression for the surface impedance given in
equation (4) is for the extreme anomalous skin effect
(EASE) region, which is the asymptotic limit for high
conductivity and low frequency for the standard
anomalous skin effect (ASE) theory, i.e. where Dingles
parameter ¢ satisfies |¢| > 1 [13]. EASE theory is in
excellent agreement with ASE theory for good con-
ductors and a range of electromagnetic wave fre-
quencies encountered for blackbody radiation below
50 °K and is mathematically much more tractable than
the ASE theory. Assuming Pippard’s “standard metal”
[14]t with vp =140 x 10°m/s and N =60 x 10%®
e/m?, the expression for the surface impedance given by
equation (5) becomes

Z/Zy =318 x 107 12v23(1-i/3)

or at the frequency maximum given by Wein’s displace-
ment law (/T )max = 369 x 10! rad/s °K, the surface
impedance is given by

Z/Zy =478 x 1075 T3 (1-i/3).

Thus, on metals having a high conductivity, the surface
impedance of the metal surface will satisfy the in-
equality | Z/Z,] « 1.
At the surface of the first conductor in which the
lateral field is present, it follows from equation (4) that
E,+ZH,= —K, and E,-ZH, = —-K; (6
at z =0, whereas at the second surface where no
internal fields are assumed to be present

E+ZH,=0 and E,—ZH, =0 (7)

+These particular values for the electron density and
Fermi velocity closely approximate those for the noble
metals. The Fermi velocity for the “standard” metal is within
15 per cent of the value for copper and aluminium. The
electron density of the standard metal is equal to that of
aluminum but deviates from that of copper by 40 per cent.
However, in the expression for oy (w, T), the dependence on
N goes at N3 so we are not sensitive to reasonable per-
centage deviations in N.

atz = [. Since the surfaces have a high conductivity and
the frequencies are sufficiently low that |Z} « Z,, it
follows that to a high degree of approximation the
boundary conditions

E,==K, and E,= —K; (8)

hold at z = 0 and the boundary conditions
E, =0 amd E,=0 9)

hold at z = I It should be noted immediately that, if
the approximate boundary conditions in equation (19)
are utilized, the Poynting flux into the second surface
must be computed in the same way as for normal modes
in a lossy waveguide or cavity resonation, namely
[11,p.291]
1 ~

Plw) = ZJJRe(Z)H,fm ds (10)
where H, is the tangential component of the electro-
magnetic field at the second surface, i.e. at z = 1.

The correlation function appearing in equations (2)
contains the normal absorption coefficient for the
surface and, as the correlation function will appear in
our final results, we wish to relate the absorption
coefficient to the surface impedance, which as we have
previously seen is a function of the properties of the
metal. The normal reflectance of a metal is related to its
surface impedance by
2

Zo—72
Zo+7Z

N =

(1)

from which, since the normal absorptance of the surface
is given by ay = 1 — Ry, we have
4ZyRe(Z) 4Re(Z)

T Zox 2P 7,

{12)

N
from which, utilizing equation (5), %y is defined in
terms of the frequency.

Equation of heat transfer
The electromagnetic field vectors in the vacuum
space between the metal plates have the general form

E= J‘j ) [atky, ko) exp(ik.r)+a'(ky, ks)

o x exp(ik’.r)] dk, dk, (13a)
H= J‘J [k x a(ky, kz)explik . r)
+k' x a'(ky, ky)exp(ik’.r)]dk, dk, (13b)

where k represents a wave traveling in the positive z
direction where k' represents a wave traveling in the
negative z direction. Utilizing the simple boundary
conditions given by equation (11) at z = [ and the more
complex boundary condition given by equation (8) at
the source surface we may solve for the amplitude of
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the electromagnetic field vectors, ie. a(k,,k;) and
d'(ky, k,) in terms of the spatial amplitudes g(k;, k) of
the lateral source field. The justification of the use of
this more complex boundary condition at x = 0 will
become apparent later in this analysis. Using these
results in equation (13b), we find, using equation (10),
that the Poynting vector at the second surface is given
by

2C Re(Z)
Plky=""—"2

k2

For a given value of k; and k,, as k varies so does ks,
and since at low temperature |Z,/Z| » 1 as k varies,
the function P(k) is sharply peaked at values of
kil~ rn, when r is a positive integer. The function
P,(k) can therefore be considered to be a set of delta-
function-like spikes, so that the total unidirectional
heat transfer due to traveling waves is simply the sum

z? Jj—m |:I(k+Zok3/Z)exp(ik3l)+(k—Z0k3/Z)exp(—ik3l)|2

k3

+
l

This expression gives the unidirectional spectral heat
flux between two parallel infinite metal surfaces having
a spacing distance [ and a surface impedance Z. We
have further assumed that Z is given by EASE theory
which means that the surface impedance is independent
of temperature. This allows the net spectral heat flux to
be determined by simply applying the principle of
superposition.

The total unidirectional heat transfer is given by
integrating the expression for the unidirectional spec-
tral heat flux given by equation (16) over all frequencies.
Two different contributions are presented—one associ-
ated with traveling wave modes and the second
associated with the quasi stationary modes of the
radiation field. The traveling wave modes correspond
to those frequencies defined through the inequality
0 < k2 +k3 < k2. For these modes, k; is obviously real
and hence these waves propagate freely. The quasi-
stationary modes of the thermal radiation field, on the
other hand, correspond to those frequencies which are
defined through the inequality k% < k? +k3 < 0. For
these modes, k5 is obviously imaginary and therefore
these solutions correspond to modes of the radiation
field that are exponentially damped in the direction
normal to the metal surface.

HEAT-TRANSFER EFFECTS
As has been indicated, the traveling wave portion of
the unidirectional heat transfer is defined by values of
the propagation vector for the lateral field satisfying
the inequality 0 < k% +k3 < k2. Hence, from equation
(16) utilizing equation (5c¢), the spectral unidirectional
heat flux due to traveling waves is given by

_ ZQC RG(Z) hwaN(w)
T 16 | Z12 expltho/KT—1)

= 1
) H . |:|cos ksl +1(Z k) ZK) sin ka2

1
+ dk, dk;,.
]Cosk3l+i(ZOk/Zk3)Sink3l|2] 1dkz. (17)

(k3 + Zok/Z) exp(ik3 I) -+ (k3 - Zok/z) Cxp( - lk3 l) | 2]

dk, dk,.  (14)

of the contributions of each of these spikes. If the more
complex boundary conditions given by equation (8) had
not been utilized in deriving equation (16), then the
term cos k3! would be absent in equation (17) and the
contribution of each spike would be infinite. We deter-
mine the contribution of each spike by expanding the
terms cos k3 in the denominator of equation (17) about
rrin a narrow region, ie. k3! = rn+ {1, thus cosksl~ 1
and sink;l= {I where { is a new variable. Once a
particular spike is considered and the above expansions
have been implemented within the integrand, then the
limits of integration are extended to infinity; this does
not affect the result to any degree, since the main
contribution to the spike is in the region where [ « 1,
but does lead to a well defined result for the integration.
Adopting this approach, the total unidirectional heat
flux due to traveling waves can be shown to be given byt

P=7Y J P(k)dk
spikes J spike

_ C i oy (w)ho
T 167,50 ) Jocii i< i explhao/KT—1)

k3
x| 1475 | dkidk,  (18)

where
N3
k3 =

l
For two similar infinite metal surfaces of infinite extent

at large spacing distances in the EASE regime, the
unidirectional heat transfer is given by

Poo = %{-;HQ'T4 (19)

where it follows from equations (7) and (14) and the
usual integration over the blackbody spectrum that

80 14 14 KT\?*3
== 2z (25)
“ = (3)C<3)Z<h>

tTo arrive at this~form of equation (18) we have utilized
the fact that 4[Re(Z)]*/|Z|? is unity which follows from
equation (7).

(20)
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Introducing the nondimensional spacing distance a =
KTl/hc and the above result we can write equation
(18) in the following nondimensional form

3
P/Py=—
4al"(14/3)((14/3)
o o nS,’3 }’l§
% - 1+—551dn. (21
n;z=:0 JAlns/‘ﬂ expn—1 < aznz> ne B

The nondimensional unidirectional heat transfer P,/P.,
due to traveling waves predicted by equation (21) is
shown in Fig. 1 as a function of the nondimensional
spacing distance a. Departures from classical theory
for the traveling wave components occur where non-
dimensional spacing distance satisfies the inequality
a< 0-1,ie IT< 0-1cm K. In this nonclassical range,
the unidirectional heat transfer due to traveling waves
is given by

3r(11/3)¢(11/3)

PP >y amyia)a

(22)

so that the unidirectional heat transfer due to traveling
waves for a <01 is given by P,/P, ~ 0-216/a. The
author has previously derived this result using alternate
techniques and discussed the physical reasoning behind
this result [15].

For the total heat transfer due to quasi-stationary
waves, we have starting from equation (17) that

P, =L P,(k)dk = %J
1
|cosh al +(Z y0/ Zk) sinh al |

Al

debdw (23
+;coshal+(ZOk/Zcx)sinhaI$2]a “} o @)

* hw

o explhw/KT—1)

where we have utilized the relationship that the factor
Zooy(w)Re(Z)/|Z|* appear in equation (17) is unity.
The parameter « occurring in equations is defined by
ks = ia where « is real since in the quasi-stationary
region k§ = k2~ (k?+k3) < 0.

Next in equation (23) we utilize the expression for
P, given by equation (19), introduce the changes in
variable x = hw/KT, o' = al, introduce the nondimen-
sional spacing distance a = KTl/nhc, to obtain the
following expression for the unidirectional heat transfer
due to quasi-stationary waves

Pq/Poo =qu/Pm+PqZ/Pao

X
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F1G. 1. Nondimensional unidirection radiant heat transfer
as a function of nondimensional spacing distance.

We denote the contribution of the first double integral
on the right side of equation (24) as P,;/P,, and the
second double integral as P,,/P,,. For the “standard
metal” the contributions due to these two factors are
shown in Fig. 1 for T = 10°K. Calculations of these
quantities at other values of the parameters Z* and T
show that P, /P, defines a universal curve independent
of Z* and T whereas P, /P is dependenton Z* and T.
The superposition of the various heat fluxes P,/P,,,
P, /P, and P, /P, is shown in Fig. 1 for the standard
metal at T = 10°K. Also shown as isolated data points
on this same figure are the limited experimental data
points on this same figure are the limited experimental
data of Cravahlo, Domoto, and Tien [8] and Domoto,
Boehm and Tien [9] taken for copper surfaces near

® 1

3 X
T 16T(14/3)C(14/3)a? L expx—1

+
(14i./3)h23 ‘ 2
cosh a’( tly —)~—~ x sinh o’

0 ApZ* K23 qT*3x53

cosh o’ +

1
(1+iy/3)mh?? ax'P? 2 |ydo pdx. (24)

T E T2y sinh o'




Thermal radiation between closely spaced metal surfaces 761

10°K. Since their data showed an emittance at large
spacing distances approximately ten times that given
by EASE theory, a second curve has been developed in
Fig. 1 P,,/P,, for ten times the surface impedance of the
“standard metal” to illustrate the effect of more
common surface conditions that are met in engineering
practice on the heat transfer. We shall show sub-
sequently that when we consider the nondimensional
heat flux, only P,,/P, is a function of the surface
impedance. Also shown in Fig. 1 are the predictions of
the previously discussed theory of Caren and Liu [2]
and Boehm and Tien [3]. As previously discussed, this
latter theory is based on the assumption of a well
characterized isotropic thermal radiation field per-
vading the metallic medium coupled with radiation
tunneling between the medium as developed by the
present author using electromagnetic boundary value
theory [1]. Rytov [ 5] has shown, however, that no such
radiation field can exist within a highly absorbing
medium. It is readily apparent that these earlier
theories, although providing results similar in form to
the present theory, are quantitatively different and do
not show the agreement with experiment provided by
the present theory. As can be seen in Fig. 1, the results
of the present theory are consistent with the limited
experimental data for heat transfer at small spacing
distances at 10°K. However, more experimental data
are certainly desirable to verify the results of this theory
at smaller values of the nondimensional spacing
distance. To provide a better understanding of the
dependence of the unidirectional heat transfer due to
quasi-stationary waves on the temperature, spacing,
and surface impedance of the metal surface, we will
next provide accurate analytical approximations for the
double integrals appearing in equation (24). Consider
first the double integral representing the term P, /P,
in equation (24). We are interested in values of the
nondimensional spacing parameter a < 107!, There-
fore, in the integral with respect to o', the term
h*3/AnZ*K*3a » 1; in fact for the “standard metal”
where a ~ 107!, we have h*3/4nZ*K?3a ~ 10°. Thus,
as is obvious in a self-consistent type of argument, the
integral with respect to o has its significant contribu-
tionsfor &’ &~ 1, wehave that the principal contributions
to the integral with respect to «’ are for ' small. Thus,
we approximate sinh o in the denominator by «' and
the term cosh ¢ by unity. A straightforward integration
of the resulting expression yields

__TAYdy3)

P, /P, ~
a 4./3T(14/3)((14/3)a

as<l. (25)

Numerical evaluation of the corresponding double
integral in equation (24) shows that this approximation
is good to 3 per cent in the range for which a <107 1.

It indicates further that this contribution to the heat
transfer due to quasi-stationary waves expressed in
terms of the above nondimension parameters is in-
dependent of the variables of surface impedance and
temperature. Its variation with spacing distance exactly
reflects the same inverse spacing distance dependence
as the contribution due to traveling waves fora < 10~ 1.
Consider next the expression for P,,/P, given by
equation (24), since in the integral with respect to o
the parameter nh*3/4Z*K*® > 1; in fact for the
“standard metal” th*3/4Z*K?3 ~ 3-3 x 10* for values
of a such that nh*3a/4Z*K*> >» 1 we neglect the term
cosha’ in the integral with respect to «’. Thus, for the
“standard metal” where a 2 1073 or in general when
a2 40Z*K*3/mh??, we find that
9Z*T(4/3)0(4/3)¢(3) (KT)Z/3
4

h

Numerical evaluation of the double integral for P,,/P.,
appearing in equation (24) shows that equation (26) is
accurate to better than 10 per cent over the ranges of
a indicated above. Where « is quite small, ie.
Th*Pa/dZ*K*? « 1, we may neglect the corresponding
terms in the denominator of the integral with respect
to o, thereby retaining only the term cosho’ in the
denominator. Thus, for the “standard metal” for
a <1075 or in general for we find that

v 2/3
3r2)¢(2)In2 (h) 2

P,,/P, ~ - 5l ==
161°(14/3){(14/3)Z*a* \KT

Numerical evaluation of the double integral for P,,/P.,
appearing in equation (24) shows that equation (27) is
accurate to better than 10 per cent over the ranges of a
indicated above. As can be seen from Fig. 1, the
component P, /P, of the quasi-stationary radiation
field dominates the heat transfer for a <1072
Equations (26) and (27) show that in distinction to the
components P,/P,, and P,,/P.,, the components P, /P,
of the heat transfer is dependent on the surface im-
pedance and surface temperature. Its dominance at
small values of a comes from the strong inverse power
dependence of the magnitude of this component of the
heat transfer with spacing.

P

200 T 8n 2T (14/3)((14/3)a (26)

SUMMARY AND DISCUSSION

This analysis has addressed radiation heat-transfer
effects between closely spaced metal surfaces at low
temperature considering as the source term the small-
scale centers of thermally induced polarization at the
metal surface. According to Leontovich and Rytov,
these centers have a spatial extent on the order of the
electron mean free path in the metal. For a metal at
low temperature, the mean free path A is long; and
since the skin effect is well developed, the skin depth d
is quite small, so that d/A « 1. Thus, to an external
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observer, the source regions have finite lateral extent
but no depth. Hence, the polarization giving rise to the
external field is in the plane of the surface and in turn
gives rise to a lateral electron field at the surface of the
metal. The standard electromagnetic boundary con-
ditions then demand the presence of an equal lateral
field exterior to the metal. Rytov has derived the
correlation function for the lateral field and shown that
the propagation vector associated with the lateral field
extends over the range 0 < ki+k% < x. For each
wavelength of the thermal radiation field in the vacuum,
therefore, this lateral source field gives rise in the
vacuum region bounding the metal to both real
traveling waves for 0 < k? + 43 < k2, ie. ky is real, and
to quasi-stationary waves for k% < k¥ +k? < o0, ie. k;
is imaginary. The quasi-stationary field is a near surface
field since k3 is imaginary. and therefore this component
is experimentally damped with increasing distance from
the surface. The traveling wave field, on the other hand.
gives rise to the thermal radiation observed at large
distances from the metal surface, i.e. to the classically
observed thermal radiation phenomena. The source
strength of the thermally induced lateral field is deter-
mined by equating the formally derived Poynting flux
from the surface derived in terms of the undetermined
strength of the source field to the classical radiant
emission P(w) = mey,, Iy, from the surface. In this latter
expression, &y, is determined by the electrodynamic
characteristics of the metal as given by EASE theory.
The present results are limited. for convenience, to the
analysis of the unidirectional heat flux from a metal
surface at low temperature to a second low temperature
metal surface in close proximity. However. since in the
EASE region the surface impedance is independent of
temperature, net radiant heat transfer can be deter-
mined by a straightforward application of the super-
position principle. Starting with the temperature-
dependent correlation functions for the lateral field and
using the standard electromagnetic boundary condi-
tions, the amplitudes of the electric and magnetic field
vectors are determined. In this analysis. only one wall
is assumed to be a source. The resulting spectral heat
flux to the opposing (receiving) wall is determined by
the application of the Poynting theorem at its surface.
The integral of the resulting expression over all
frequencies provide the total unidirectional heat flux.
The expression for the total unidirectional heat flux
contains three terms, a contribution due to traveling
waves [see equation (21)] and two distinct contribu-
tions due to quasi-stationary waves [see equation (24)].
The contributions due to quasi-stationary waves pro-
vide negligible contributions to the unidirectional heat
flux at large spacing distances while the contribution
due to traveling waves provides the classical heat
transfer equation, ie. P,/P, = 1. for nondimensional

spacing distances satisfying the inequality ¢ 2 1. ie.
[Z 2:54,. In the range of nondimensional spacing
distances bounded approximately by 107! < a < 1. the
unidirectional heat flux increases over the value at
infinite spacing distances with approximately equal
contributions (see Fig. 1) due to traveling waves and
the component of the heat transfer due to quasi-
stationary waves defined as P,; /P, [see equation (24)].
These contributions, when written in the nondimen-
sional form graphically illustrated in Fig. 1, are
independent of surface temperature and surface im-
pedance. For nondimensional spacing distances satis-
fying the inequality of <107' both of these
contributions increase indirect inverse proportion 1o
the nondimensional spacing distance [see equations
(22) and (25)]. For smaller nondimensional spacing
distances, i.e. ¢ < 107 %, the unidirectional heat flux is
dominated by a shorter range component of the con-
tribution, due to quasi-stationary waves, which is
defined by the term P,,/P,. appearing in equation (24).
When written in the nondimensional form as depicted
in Fig. 1. this term is dependent on the surface
temperature and surface impedance [see equations (26)
and (27)]. To provide a physical insight into the above
summary of the major findings of this paper. first
consider the contribution of the traveling wave com-
ponent to the unidirectional heat flux. The traveling
waves emitted by a free surface undergo multiple
reflections when a second parallel metal surface is
present. Providing the conductivity is high. this will
lead to a buildup in the field strength in the cavity for
those wavelengths and directions of propagation that
lead to antinodes at the metal surfaces, i.e. to normal
modes in the cavity. Consider now the energy density
in a rectangular cavity two large dimensions, /; and I,
and one small dimension /. Assume further that the
temperature of the cavity is such that 2, » L The
normal modes of the electromagnetic field in the cavity
are given by the relationship [16]

2 . 272
Wy nyony = (ZTC) r'}wu.nz.n;

= 22 mi/ I+ n3iE 03/ (28)

where the integers nq, n,, 1 are restricted such that two
or more of the integers n,, n,, 13 must be nonzero.
Therefore, it follows that all modes for which n; # 0
essentially do not contribute to the thermal radiation
density since A, n, 4, < An. Thus, the modes that do
contribute to the thermal radiation density are those
for which ny = 0. There is a large number of such
modes, since for large values of /; and /, there will be
a large number of combinations of integers n, and n,
for which A,, ,,.0 ® 4. Under these conditions, as the
small dimension [ of the box tends toward zero, the
number and, therefore, the total energy associated with
these modes remains fixed. yet the volume containing
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this total radiant energy decreases as { and thus the
corresponding energy density increases as 1/1. Since the
breakpoint for the energy density should occur where
I 1,, we should expect for small values of ! that
Ux U, (Am/) or U= U, (0-4/a). Now the unidirec-
tional heat flux to the second wall is given approxi-
mately by P = 1/4aclU where xis the “spectral average”
of the absorbtivity of the walls or PP, ~U/U, so
that we would anticipate that P/P,, ~ 0-4/a.

Our rigorous calculation provided by equation (22)
gives P/P,, = 0-216/a. Thus, the above discussion pro-
vides us with a good insight into the behavior of the
traveling wave contribution to the unidirectional heat
flux at small spacing distances where correlation in the
source term has not been considered. Consider now the
contribution to the unidirectional heat flux due to
quasi-stationary waves. Consider the magnetic field
vector near an isolated metal surface defined in terms
of the strength of the later source field using the simple
boundary condition given by equation {8); we have then

H-= LU [k x atk;, ko) exp(ik.r)dk, dk, (29)
Zok )] -

where

- &xgx +kag2

a1 = —41 %
3

4y = —g2. 43
We choose to compute the quantity (H . H*) since this
is both a measure of the field strength and would be
proportional to the heat flux [see equation (10}]
transferred to a second parallel metal surface in the
vicinity of the source surface where multireflection
effects are not of significance. For a lateral source as
provided by equation (2a), we find that for the con-
tribution due to quasi-stationary waves, i.e. k? + k3 > k2

2nC = /k*
77 |, E-%—a exp(~2aljada  (30)

where we have used the notation ks = iz Consider
now the first item in the expression for (H. H%)u,,
which corresponds in the present approximations to
the term giving rise to the component P, /P, in
equation (24), we have that

2nk2CJ°° exp(—al)
5 da.
ZO 0

This integral is divergent because we have utilized the
approximate boundary condition given by equation (8)
in order to derive siruple expressions which lead more
readily to physical interpretations rather than the exact
boundary given by equation (6) in deriving this result.
The more exact boundary condition essentially leads to
a quite small but finite lower bound on « [from
equation (24)]; for example, we can find that effectively
the lower bound on o is given by oy &~ 10~ 2) which we

H . H%yy, =

H . H¥yp, = &2Y)
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will assume to be present in equation (31). Hence, the
principal contributions to the integral will be fora > o
but at the same time for « ~ ¢, under this condition
exp(—al) = 1. This latter approximation follows since,
as can be deduced from Fig. 1, for oy, &~ 10~ 2 the range
of values of I for which P,/P, make significant
contributions will correspond to «; ! < 1. Thus, in the
range of values of | <1/ =~ several centimeters we
have that

Vel 2 «

H B, —’—‘-’%CJ 53
5 O
The field strength is thus independent of distance from
the metal surface providing ! < /¢, . Also note that a
small but approximately fixed range of values of the
lateral propagation vector in the lateral field contribute,
namely, those values for which (k{+ k%) > k? but for
which also (k}+k3) ~ k%, ie. those values for which
k? —(k3+k3) ~ of . Asasecond metal surface is brought
near the source surface due to the strong unattenuvated
nature of this term for I < 1/ag, the field strength will
be built up in direct proportion to the numbers of
multiple reflections or equivalently proportional to 1/1.
Analogous to the traveling wave case, the energy
density due to this component of the quasi-stationary
field will increase in direct proportion to 1/, i.e. indirect
inverse proportion to the nondimensional spacing
distance, and will build up to a value independent of
the strength of the source term. Hence the unidirec-
tional heat-transfer effects due to this term in the
quasi-stationary field should be directly proportional
to the inverse of the nondimensional spacing distance
and depend only on the absorptance {(emittance) of the
receiving surface. Thus, written in nondimensional
terms, this term should lead to a unidirectional heat
flux which is independent of surface impedance. This is
confirmed by the exact evaluation of the term P, /P,
in equation (25) which are depicted in Fig. 1. Consider
now the term P,,/P_, in equation (24). The analogous
term in our approximate expression for the magnetic
field strength due to an isolated surface given in
equation (30) is

2nC [ *®
H . H*, = ”‘Z‘E expl{—2aladde. (33)
ZOk o
Equation {33) can be integrated to yield
3nC 1
H*¥)an, = =55 = 3
H -H 472k I+ 39

The integral in equation (33) can be interpreted
physically as a superposition of a continuum of quasi-
stationary waves with a high density at large values of
o (increasing as «*) which contribute significantly only
if al < of 1. Thus, with decreasing spacing distance the
number of waves able to reach over to the second
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surface is the dominant factor and not multiple re-
flections of the less spectrally dense, more weakly
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RAYONNEMENT THERMIQUE ENTRE SURFACES METALLIQUES TRES PROCHES,
A BASSE TEMPERATURE, DU AUX COMPOSANTES PROGRESSIVES ET
QUASI-STATIONNAIRES DU CHAMP DE RADIATION

Résumé—On analyse le rayonnement & basse température entre des surfaces métalliques paralléles trés
proches. La théorie considére les champs électriques fluctuants thermiquement induits a la surface du
métal, semblables 4 ceux qui sont responsables du bruit de Nyquist, et sources du champ de rayonnement
thermique dans I'espace vide entre les métaux. On montre qu'il existe dans 'espace vide & la fois une
onde progressive et une onde quasi stationnaire. Les vecteurs associés aux champs électrique et
magnétique qui existent dans I'espace vide sont déterminés en utilisant la théorie classique des frontiéres
¢électromagnétiques et les flux thermiques unidirectionnels sont calculés en utilisant le théoréme de
Poynting. Les flux thermiques correspondent a des effets importants et insoupgonnés quand le produit
de la distance ! a la température des surfaces T est inférieur a 1 ¢cm K. Aux faibles valeurs de I le flux
thermique varie tout d’abord comme Pinverse de /, puis quand T < 10" *cmK, le transfert uni-
directionnel croit proportionnellement & la quatriéme puissance de ce produit. On constate que ces
résultats sont conformes aux mesures expérimentales antéricures.

WARMES'I:RAHLUNG ZWISCHEN DICHT GEGENUBERLIEGENDEN METALLISCHEN
OBERFLACHEN BEI TIEFEN TEMPERATUREN AUFGRUND DER WANDERNDEN
UND QUASI-STATIONAREN KOMPONENTEN DES STRAHLUNGSFELDS

Zusammenfassung —Es wird die Wirmeiibertragung durch Strahlung bei tiefen Temperaturen zwischen
dicht gegeniiberliegenden, parallelen metallischen Oberflichen untersucht. Die Theorie beriicksichtigt
thermisch induzierte, wechselnde elektrische Felder an den metallischen Oberflichen wie jene, dic das
Nyquist-Rauschen verursachen, als Quelle fiir das Wirmestrahlungsfeld in dem leeren Raum zwischen
den Metallplatten. Es wird gezeigt. daBl sowohl wandernde als auch quasi-stationiire Wellenkomponenten
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des Wirmestrahlungsfelds als Folge dieser Quellen im Vakuumbereich existieren. Die diesen Feldern
im leeren Raum zugeordneten elektrischen und magnetischen Vektorfelder sind unter Anwendung der
geldufigen elektromagnetischen Randtheorien abgeleitet, und die einseitig gerichteten Wirmefliisse sind
unter Verwendung des Poynting-Theorems berechnet. Es wird gezeigt. daBl die resultierenden Wérme-
strome zu sehr ungewodhnlichen Auswirkungen der Wirmeiibertragung in Beziehung stehen, wenn das
Produkt der Entfernung 1 und der Temperatur T kleiner als 1 cm K ist. Bei kleinen Entfernungen nimmt
der WirmefiuB umgekehrt proportional zur Entfernung zu, und wenn 1. T < 10”7 2cmK ist, nimmt der
ungerichtete Wirmeflul umgekehrt proportional zur 4. Potenz dieses Produkts zu. Es wird berichtet,
daB die Ergebnisse dieser Theorie mit vorangegangenen experimentellen Messungen iibereinstimmen,

JIVYUCTBIN TEIUJIONEPEHOC ITPU HU3KOW TEMIIEPATYPE MEXIAY BJIN3KO
PACIIOJIOXKEHHBIMU OPYI K APYIY METAJINIMYECKUMU NNOBEPXHOCTAMU
3A CUET NOJBUXHBIX Y KBASUCTALIMOHAPHBIX COCTABJIAKOMIUX
oJasa NNy4yEHUA
AHHOTAIMS — AHATM3UPYIOTCA 3DEPEKTHI JTYYUCTOTO TEILTIONEPEHOCa MeXAY OJIH3KO pacronoXeH-
HBIMM OPYT K APYTY MapajuleNbHbIMH METaNIH4YECKUMH [IOBEPXHOCTAMHM NIPH HHU3KOM TeMmepaType.
TepMHYeCKH HHAYLMPOBAaHHbIE (IyKTyaUMOHHBIE BNIEKTPHYECKHE MO Ha METAUIMYeCKoH MoBepx-
HOCTH, aHaJIOTHYHbIC HOJIAM, co3marommM 1uymel HalikBHcTa, paccMaTpMBaloTCA KaK HCTOYHHKH
TIOJIS TENIOBOT'O M3My4YEHHS B BAKYYMHOM MPOCTPAHCTBE MEKAY METANIHYECKAMH MOBEPXHOCTSAMH.
IToka3zano, yro Gnarozaps 3TUM HCTOYHKKAM B BaKyyMHOM 30HEe HMEIOT MECTO Kak Oeryuas BojHa
NOJIA TEIIOBOTO M3JIy4eHHs, TaK M KBAa3UCTAUMOHAapHas BoJiHa. C MOMOLIBIO OGLIETPHHATON Mek-
TPOMAarHHTHOA TEOPUH IOTPaHUYHOI'O CJIOSA BLIBOASTCA BEKTOPBL 3JIEKTPHYECKOTO M MArHMTHOroO
none#, XapakTepHble U1 NOAeH B BAKYYMHOM NIPOCTPAHCTBE, a [MOCPEACTBOM TeopeMbl [1oiHTHHra
PacCYMTBHIBAKOTCA PE3YALTHPYIOLLME OJHOHAINPABIEHHbIE TEIUIOBbIE NOTOKH. [Toka3aHo, YTo pe3yin-
THPYIOLIHE TEIUTOBBIE TOTOKH COOTBETCTBYIOT B BBICLIEH CTENEHHN HEKTACCUYECKHM 3 eKTaM Tero-
TepPeHoca, Korja NMpoM3BEAECHHE DACCTOSHAS MEXIY MOBEPXHOCTAMM / Ha TEMNEPATYPY MOBEDX-
HocTH T okasmiBaeTcst MeHblle 1 cM°K. TIpu HeGosbiuMX 3a30pax TENOBOI OTOK CHAYana pacyér
0o6paTHO MPONOPUMOHANBHO BeNMHYHHE 3a30pa, a 3areM npu /TS 1072 cM°K onHoHanpaBieHHbIH
TEMJIONEPEHOC BO3pacTaeT oOpaTHO NPOMOPLMOHAIBLHO YETBEPTOH CTENMEHM TOrO MPOU3IBEACHHSA.
INoka3aHo, YTO 3Ta TEOPUH COOTBETCTBYET IKCIEPHMEHTAIbHBIM AAHHBIM paHee NpPOBEJEHHBIX
U3MEpPEHUH.
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